

ROAD INFRASTRUCTURE MANAGEMENT FORUM

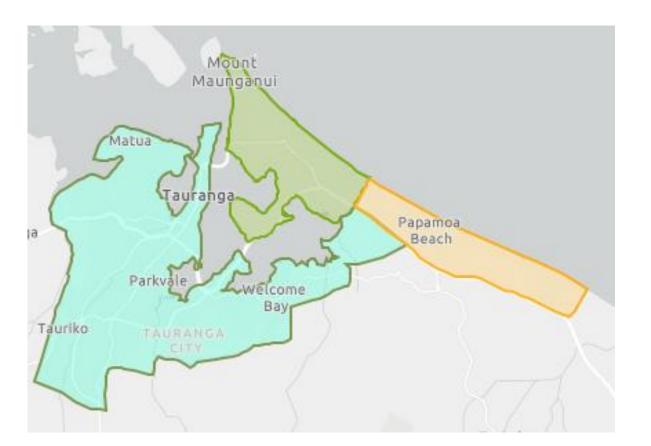
Our Carbon Equation

From Rules to Objectives

Bringing innovation into TCC renewal forecasting approach

Sikander Singh | Tauranga City Council

in association with



Introduction and Overview

- TCC network summary and challenges
- Our Asset Management approach
- Bringing innovation into our modelling framework
- Field Validation of the model outputs
- What is next?

Network Summary

Road By ONRC (600km)

National – 5km Regional 12km Arterial Road – 85km Primary Collector – 55Km Secondary Collector - 120 Access and Low Volume -326km **320 km A/C (55%), 260 km Chipseal (45%), 14 km Interlocking Blocks ,1.5 km Concrete**

Subgrade Type by Area

Mt Maunganui - Sandy Tauranga - Ashes Papamoa - Sandy and Peat

Challenge 1: Population Growth Current and potential Urban Growth Areas

Adds pressure to our network and assets, leading to increased congestion and asset deterioration.

Challenge 2: Increased Commercial Activity

More heavy vehicles utilizing our network due to port expansion, speeding up failures.

RIMS

Challenge 3: Under-Investment

Under-Investment – Long term under investment, leading to growing backlog and increased risk

Growing Maintenance Operational and Renewal (MOR) commitment – Growing asset base, increasing TCC's need for MOR to support these assets

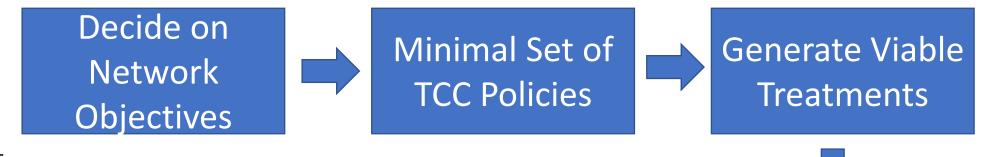
Challenge 4: Multi Modal - Bus Routes

Straining roads not designed to support buses (especially electric busses)

TCC Approach to deal with Challenges Asset Management Planning Approach

- Improved Asset Data
- Data driven evidence-based decision making is our goal
- Accurate condition assessments and assets inventory
- Continuous Improvement of Forecast Modeling
- Innovation in forecast modeling
- Development of condition-based renewal program of other asset types
- Improved data, improving forecasting, improving asset valuation
- GIS Capital Planning Tool Transportation , 3 Waters, Parks Better project alignment, efficient and less rework reducing carbon footprint

Multi-Objective Modelling


- Collaborated with Lonrix to use a new innovative exploratory model (Juno-Cassandra)
- New modelling framework suitable for any modelling period from two years to 40 years plus
- Two key milestones:
 - Incorporate Machine Learning models into the Deterioration Model
 - Move away from Rules toward Objectives

Let's start with the Objectives!

Study to Investigate:

- Can we START with network objectives and minimal rules, and
- Design an algorithm to maximise achievements on those objectives

E.g.

Maximise the reduction of pavement distress exposed to HCV Minimise the variation in total spend over the 3-year period 90th percentile Rut Depth levels for ONRC Categories

We set the objectives, the model finds how to optimally achieve those objectives Evaluate Impact on Objectives using Optimisation principles

Initial Results (November 2021)

Field Validation:

- Senior members of contract team including contract manager and supplier
- Valuable exercise helped get buy-in from all parties and build confidence in the model and AMP process

Initial Findings:

- Overall, the results are well-aligned with objectives and observed condition
- Especially good results for Surface Seals
- Rehabilitation outcomes less than desirable more work on this is needed

Treatments	Juno Model Length (km)	Actual Validated Length (km)	Delta	Percentage Variation
AC	6.3	8.4	2.1	33%
Seal	14.4	14.7	0.3	2%
Rehab	1.3	0.3	-1.0	-75%
Projects	18.5	18.4	-0.1	1%
Grand Total	40.5	41.8	1.3	3%

What is Next?

Next Steps (1):

1. Improved usage of data:

- Improve the relevance of the evidence
- Utilise AI-driven defect detection methods to augment visual surveys and all-fault data
- Intelligently combine evidence to maximize information for the model

What is Next?

Next Steps (2):

2. Include "Soft Objectives" in the Model:

- Design objectives to minimize Carbon Footprint
- E.g. favour treatment candidates situated in the same area within a specific year
- Incorporate a Risk-Benefit-Cost view of treatments in which element Criticality is explicitly considered

Acknowledgement

Thank You!

