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In this Presentation:

• Background to Machine Learning

• Promises of ML in Deterioration Modelling

• Perils of ML in Deterioration Modelling

• Concluding Thoughts
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Historical Background
• “Machine Learning” is concerned with turning data into 

actionable intelligence

• The term “Machine Learning” was coined by  Arthur 
Samuel in 1959

Machine Learning evolved in two generally defined stages:

• Knowledge Based Systems – machine relies on rules (1970s)

• Machine Leaning by inference (1980’s) – let machine learn 
by examples and infers “rules” by itself

• A study estimated that in 2017 90% of the world’s 
data was created in the preceding two years
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The Machine Learning Landscape

Artificial Intelligence (AI)

Machine Learning

Deep Learning

Artificial Intelligence
Any technique that enables 
computers to mimic human 
intelligenceMachine Learning
• A subset of AI
• Techniques that enable 

machines to improve at 
tasks/predictions by learning 
from examples

Deep Learning
• A subset of ML
• Uses Artificial Neural Networks
• Needs more data
• Infers/creates the features by 

itselfhttps://docs.microsoft.com/en-us/azure/machine-
learning/concept-deep-learning-vs-machine-learning
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Where can we use ML in Deterioration Modelling?
What happens at the model element level?
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A peek into the future

Asset Management 
System & 
Database

Train and Evaluate 
Models

Data Stream 1 (HSD)

Data Stream 2 
(AI Distress Inference)

Data Stream 3
Crash & Maintenance

Extract Training and 
Testing Set

Stored ML 
Models

• More accurate, evidence 
based decisions and 
forecasts

• Improved Risk-Cost-Benefit

Decision Support
(Virtual FIT, Mobile Apps)

Deterioration 
Models

Review Performance 
Metrics
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Challenges in Machine Learning:
1. Model Overfitting
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Challenges in Machine Learning:

1. Model Overfitting – the solution?

Use Machine Learning best practices:
• Use a holdout set for testing (80% training data, 20% testing)
• Use k-fold Cross-Validation

Training Data Testing Data
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Challenges in Machine Learning:
2. ML may distract us to Focus on Wrong Problem

Variability may be a more serious 
challenge than Accuracy:
• ML addresses mainly Accuracy
• Most cost comes from semi-

outliers?
• More data types will help, but will 

be costly and may not solve the 
problem

• Need to move to probabilistic 
thinking and modelling

R2 = 0.36 on 10-fold Cross-Validation
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Challenges in Machine Learning:
3. Human Resource Challenges

What do you mean? Won’t machine learning put us all out of work?

The Paradox of Automation:
The more efficient an Automated system is, the more crucial the contribution 
of human operators. Efficient automation makes humans more important, not 
less

New human resources and cooperation models may be 
needed to handle these paradoxes

The Irony of Automation:
The more reliable an Automated system is, the less human operators have to 
do, so the less attention they pay to it. And so they are less likely to notice 
when things go wrong.
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Some conclusions:

• Machine Learning is an exciting new tool in the Asset Manager’s 
toolbox

• It may lead to significant improvements in decision making

• It is not a silver bullet

• Critical challenges remain – particularly high variability in many road 
asset management problems

• Managers need to build internal and external human resources to 
maximise the ML wave

• Young engineers – your ability to control and focus your attention is 
your most valuable asset – guard and protect it!
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Machine Learning:

Some Background

Machine Learning

• “Machine Learning” is concerned 
with turning data into actionable 
intelligence

• The term “Machine Learning” was 
coined by  Arthur Samuel in 1959

• Machine Learning evolved in two 
generally defined stages:
• Knowledge Based Systems – machine 

relies on rules (1970s)

• Machine Leaning by inference (1980’s) 
– let machine learn by examples and 
infers “rules” by itself
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Promises of Machine Learning in IAM

• Maximise value gained from available data

• Improved accuracy

• Potential for automation – models updated on demand

• Improved decision making, reduction in risk and cost
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Some General Classes of ML Models

• Classification (two-class)

• Classification (multi-class)

• Regression

• Clustering

• Image Classification
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Decision Tree Visualisation
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Regression Tree Visualisation

Age < X

Yes No

Rut > M

Yes No

Traffic > Y

No

Road Class > 2

Yes No

Average of 
all values in 
this group

Yes

Etc.Etc.

Etc.
Average of 
all values in 
this group



Our Carbon Equation

Classification Model Types

Objective: Predict a Class given some information

• Decision Tree
• Decision Forest
• Logistic regression
• Boosted Decision Tree
• Neural Networks
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Regression Model Types

Objective: Predict a numerical value given some information

• Fast Forest Quantile Regression (predicts a distribution)
• Poisson Regression (predicts counts)
• OLS: Ordinary Least-Squares Regression (our old friend – use Excel!)
• Bayesian Linear Regression (small data sets)
• Decision Forest Regression 
• Neural network regression 
• Boosted Decision Tree Regression
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Ensemble Models

Approach: Build multiple models and average the result

Bagged Trees
• Randomly sample with replacement
• Build a model on each random sample set
• Average the predictions of each model

Boosting
1. Train a model
2. Identify where it makes errors
3. Build next model to improve on errors
4. Repeat Steps 1-3 many times
5. Average the predictions of all models
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An example – pothole prediction:

Model 1: Randomly Assign Potholes on 12%

Potholes one of the most difficult distresses to predict
Historically potholes observed on 12% of segments

Accuracy = 79%

Sensitivity = 12% (of segments that did have potholes, what % correctly identified?)

Precision = 12% (what prop. of segments where potholes were predicted did actually have potholes?)
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An example – pothole prediction:

Boosted Decision Tree – prediction on holdout test set
(Model based on ADT, HCV, Surface Type etc.)

Accuracy = 88%

Sensitivity = 26% (of segments that did have potholes, what % correctly identified?)

Precision = 51% (what prop. of segments where potholes were predicted did actually have potholes?)
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Longitudinal and Transverse Cracks

Accuracy = 75%

Sensitivity = 65% (of segments that did have L&T Cracks, what % correctly identified?)

Precision = 75% (what prop. of segments where L&T cracks were predicted did actually have cracks?)

Boosted Decision Tree – prediction on holdout test set
(Model based on ADT, HCV, Surface Type etc.)


